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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Image formation in the electron microscope 
I. The application of transfer theory to a consideration of 
elastic electron scattering 

D. L. MISELL 
Department of Physics, Queen Elizabeth College, London W8, UK 
MS. receiz,ed 26th Apri l  1971 

Abstract. The application of transfer theory to image formation in the electron 
microscope is discussed. The equivalence of the transfer theory and the 
diffraction integral formulation of image formation is established for a coherent 
monochromatic incident electron beam, and for elastic electron scattering. 
The transfer theory is extended to include partially coherent and nonmono- 
chromatic radiation. The use of the results of the transfer theory leads to the 
diffraction integral formulation, which includes the effects of chromatic 
aberration (thermal energy effect) and the coherence of the incident electron 
beam. The modification to a criterion for optimum contrast in the final image 
when chromatic aberration is taken into account is discussed. 

1. Introduction 
The purpose of this paper is to consider the application of transfer theory to a 

consideration of image formation in the electron microscope. In  particular, the 
inclusion of the angular (spatial) and energy (chromatic) characteristics of the incident 
electron beam into the wave theory of image formation will be considered. In  the 
case of monochromatic parallel (coherent) radiation the transfer theory leads to the 
diffraction integral formulation for the image intensity. The  diffraction integral formu- 
lation (Schemer 1949, Uyeda 1955, Haine 1957) has been used extensively to assess the 
possibility of visualizing a single atom or an array of single atoms in a conventional 
transmission electron microscope (Heidenreich and Hamming 1965, Eisenhandler and 
Siege1 1966, Reimer 1969, Niehrs 1969, 1970, Hall and Hines 1970). No detailed 
analysis seems to have been made on more realistic specimens including the effects 
of the angular and energy distributions of the incident electron beam; in particular, the 
chromatic aberration effect due to the thermal energy distribution of the electrons 
emitted from the electron gun has not been considered. Inelastic electron scattering 
and its role in image formation is usually considered as an incoherent background in 
the final image; a notable exception is the work of Haine (1957). It also seems usual 
to work in single scattering conditions (or in the first Born approximation) and the 
amplitude of the unscattered component is taken to be unity. Clearly these limitations 
are imposed by the rigidity of the simple form taken by the diffraction integral 
formulation. I n  the theory of image formation in the scanning transmission electron 
microscope (Zeitler and Thomson 1970a, 1970b) the exclusion of the thermal energy 
distribution of the incident electron beam and of the inelastic electron scattering is 
totally justified by the design features of this type of microscope (see Crewe 1970 for 
a review). 

If a more general approach to image formation, such as the transfer theory, is 
used then the specific diffraction integral formulation may be derived under all 
conditions of illumination and the effect of chromatic aberration may be included. I t  
is noted that the present work is specifically orientated towards a calculation of the 
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Image formation in the electron microscope I 783 

electron microscope image and is not directed towards the far more significant and 
difficult problem of inferring the nature of the specimen from the image; only in the 
case of a linear transfer theory, as applied to a weak phase object, has success been 
achieved in this direction (Hanszen 1969, 1971). 

In  this paper, elastic electron scattering only is considered and inelastic electron 
scattering, which is incoherent with respect to the elastic and unscattered components 
of the transmitted electron beam, will be treated in a second paper. § 2 deals with the 
application of the transfer theory to image formation with an axially coherent and 
monochromatic electron beam. I n  § $ 3  and 4,  the extension of theory to a considera- 
tion respectively of the angular divergence and energy distribution of the incident 
electron beam is given. 4 5 considers the combined effect of the angular and energy 
distributions of the incident electron beam on the final image. In  relation to elastic 
electron scattering, a criterion for optimum contrast is discussed; in addition to 
spherical aberration and defocusing effects, chromatic aberration is included ( 5 4.2). 

2. Monochromatic and spatially coherent radiation 
The subject matter of this section represents the application of optical transfer 

theory (eg Hopkins 1953, 1955, Born and Wolf 1959) to image formation in the 
electron microscope; in particular, the integral diffraction equation is derived in its 
usual form suitable for numerical evaluation. 

The incident electron is represented by a plane wave exp(i KO . r )  of unit amplitude. 
KO is the wavevector describing the direction of the incident electron beam; 
lKol = 2n/X0 represents the incident energy of the electron beam ( E o  = h2K02/2m). 
The incident electron is scattered by the specimen and the scattered wave #o immedi- 
ately after the object is dependent on the conditions of specimen illumination and 
the electron scattering properties of the specimen. In  the first case the radiation is 
monochromatic ( lKoI = constant) and coherent in the x direction (KO = constant 
along the optic axis). If the object is such that all electrons incident on the object are 
transmitted (ie negligible back-scattering), then the current density j o ( r o )  immediately 
behind the object is 

where ro  represents coordinates (xo, yo )  in the object plane. Inelastic electron 
scattering is explicitly omitted in equation (1) because of the omission in #o of any 
dependence on a scattered wavevector K .  It will be assumed that inelastic electron 
scattering gives rise to an incoherent background (not necessarily a constant) in the 
final image. 

The  electron microscope transmits information on #o(ro)  to an image plane; the 
image wave #l(ri) is defined by image coordinates ri = (xi, yi). If it is assumed that 
noise, for example, mechanical vibrations of the electron microscope column, granu- 
larity of the recording photographic emulsion, may be neglected, then there is a 
unique relationship between #o  and #i. The  linear relationship between #o and t,hi can 
be represented by (Lenz 1965) 

-io(ro) = l#o( r0> l2  (1) 

G(ro’, ri) is the image wavefunction corresponding to a point source of electrons at 
ro’ in the object, G(ro, ri) is determined only by the electron-optical system, namely 
the lens aberrations, apertures, defocusing (with reference to the objective lens 
system), and the specimen illumination conditions. I n  the isoplanatic approximation 

3.4 



784 D. L. Misell 

(Born and Wolf 1959, Lenz 1965) 

G(ro, ri) = G - - r o  (2 1 (3)  

where M is the electron-optical magnification. 
The  isoplanatic approximation is valid for aberrations of the objective lens that 

depend only on the direction of the electron trajectory (angle of scattering); this 
includes the third order aberrations : spherical aberration, chromatic aberration, 
axial astigmatism and defocusing. In  the isoplanatic approximation, equation (2) 
becomes a two dimensional convolution integral 

By the application of a Fourier transformation to equation (4), $i(ri) can be written as 

&( ri) = 1 S,(v) T(v) exp (- 27iiv . $) dv (5) 

where the two dimensional Fourier transforms of y50, $i and G are defined respectively 
by 

So(v) = $o( ro) exp(2niv . ro)  dr, 

Si(v) = J’ii (rJ exp(2niv . 2) dri  

T(v) = 1 G(r )  exp(2niv . r )  d r  

where v is the vector (ut, v,,) and v . r = u,x + uyy. 

for an electron-optical system from the properties of the objective lens (Lenz 1965) 
T(v) is the amplitude transfer function (Born and Wolf 1959); T(v) can be derived 

1 
M 

T(v) = - exp( - iKo W(v)}B(v) (7) 

where W is termed the wave aberration function producing a phase shift KO W in the 
scattered electron wave (the negative sign in the exponential implies a phase advance). 
B(v) is an aperture function; B(v) = 1 for the transparent parts of the aperture and 
B(v) = 0 for the opaque parts. 

The  Kirchhoff diffraction integral, frequently used in the calculation of electron 
microscope images (eg Scherzer 1949, Uyeda 1955, Haine 1957), and as applied to 
the scattered wave in the back focal plane of the objective lens, is the equivalent of 
the transform from Si to yhi (equation (5)). The Kirchhoff integral is over the trans- 
parent part of the objective aperture and takes account of the phase shifts introduced 
by aberrations and defocusing (Scherzer 1949). Each point in the back focal plane 
of the objective lens corresponds to a spatial frequency v and So(v) represents the 
diffracted (scattered) wave in the back focal plane (Lenz 1965). It is usual to transform 
equation ( 5 )  to a coordinate system in real space, either rB( = (xB, yB) coordinates in 
the back focal plane) or polar coordinates e( = (e, 4)  polar and azimuthal angles of 
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scattering), where 
rB = fXov or 8 = h0v. 

f is the focal length of the objective lens. Y is equivalent to the reciprocal lattice 
vector g for a crystalline specimen. I n  either of these coordinate systems, W of 
equation ( 7 )  is for a lens subject to spherical aberration, defocusing and axial astigma- 
tism respectively (eg Lenz 1965, Hanszen 1971) 

(9) 
c~ (xB2 +YB2)2 Af (%B2 +YB2)  -- CA (xB2 -YB2) 

2 f2 + -  
2 f 2  

W( rB)  = - 
4 f4 

or 
C,O4 Afe2 CAP 

cos 24. 
x(e) = 4 + - 2 - - 2 

C, is the third order spherical aberration coefficient, CA is the coefficient of astigma- 
tism, Af is the change in focal length of the objective lens (Af < 0 corresponds to 
underfocusing, Af > 0 to overfocusing). In  equation (7) the negative sign implies a 
phase advance with respect to the electron wave travelling along the optic axis of the 
objective lens. The gaussian image plane is defined for an aberration free lens and 
Af = 0. 

The transformation of equation (5) to (0, 4) coordinates is effected by 

0cos+ = hov, 
&in+  = X0v, 

for the small-angle approximation (sin 0 2: 0) which is valid in the conventional 
transmission electron microscope ( 0  < 0.1 rad). 

$i(xi, Yi) = - Io 1 Y(8)H(8)  exp( - 

Equation ( 5 )  becomes 

1 KO 2n iKo 

2?? 0 

1 
M 

is the 8 equivalent of equation (7). 

(xi8 COS 0+yi8 sin 4)  0 dB d4  (12) 

where 

H(8) = - exp{ - iKoX(8)}D(8) (13) 

In  bright field electron microscopy with the normal circular aperture 

D(8) = 1 0 < 0 < C r  0 < 4 4 2 r  
= o  a < e  0 < 4 < 27. (13a) 

CI is the semiangle subtended by the objective aperture at the specimen. Equation (12) 
becomes 

iKo 
&(xi, Yi) = ~ 1; r Y ( 8 )  exp{ - iKoX(8)} exp( - (xis cos 4 +yiB sin 4) 

271.M 0 

Y(8) represents the diffraction pattern in the back focal plane and includes the 
unscattered component (represented by S(8)). If Y(8) is separated into the unscattered 
component @(e) ( p 2  represents the fraction of the incident electron beam that is 
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unscattered) and an elastic wave YE(o), equation (14) becomes 

(15) 1 iKo 
x exp( - (x10 cos #J +yiOsin 4) 0 d0 dq3. 

The  current densityjl(ri) in the image is 

jdri) = $I(% YI)$,*(% Y1) = I$d% YI)l2. (16) 
Using Parseval’s theorem derived from the properties of the Fourier transform 
(Sneddon 1951) it can be shown that 

t w  f m  j j (l$i(xl? Y J I 2 -  j$) dxi dY1 = j; f IPd6 #J)l20 dB d#J* (17) 
- w  - m  0 

Equation (17) expresses the physical situation that if the background intensity 
P2/M2 is subtracted from the image intensity j,, then the number of electrons in 
( j ,  - p2/M2> is identical to the number scattered elastically within the objective 
aperture, h E ( x )  (Reimer 1969, Crick and Misell 1971). 

Equation (15) has been used to calculate the optimum conditions of defocusing 
for the resolution of a single atom or an array of atoms (eg Heidenreich and Hamming 
1965, Hall and Hines 1970) with ,L? set equal to unity. In  the case of an object with a 
centre of symmetry, such as obtains for a single atom, equation (15) becomes 
(Schemer 1949), neglecting axial astigmatism 

Hence transfer theory may be used to obtain a specific relationship between 
$o and $i in a form frequently applied in the literature. It is noted that the specific 
equations such as equations (15) and (18) assume a coherent incident electron wave 
and neglect the chromatic aberration due to the thermal energy spread of the incident 
beam. The  chromatic aberration term for the elastically scattered electrons is at 
least the same order of magnitude as the defocusing and spherical aberration terms 
in x(0) (see 5 4.2 and Crick and Misell 1971). Thus the resolution criterion based on 
a consideration of spherical aberration, defocusing and the diffraction limit (specified 
in equation (18) by the Bessel function of order zero J, and the value for a) is not 
strictly valid. 

In  the case of scattering by a single atom, YE(@ = exp(in/2)fB(0) in the first 
Born approximation ; the T / Z  factor expresses the phase difference (delay) between 
the elastically scattered wave and the unscattered wave p8(0) (eg Haine 1957). The 
contrast C(yi) is, from equation (18) neglecting second order terms 

C(Yi) = ji(yi) - background intensity II 2K0/3-l j a f B ( 0 )  sin{Kox(0))Jo(-) KOYi0 0 do. 
background intensity 0 M 

(19) 
More correctly the complex electron scattering factor f(0) exp(iq(0)) should be used 
in place offB(0) (Zeitler 1966), givingf(0)sin{KoX(O) - ,(e)} in the integral. 
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On axis with ri = 0, maximum contrast is obtained for (eg Zeitler and Thomson 
1970a) 

&2 < h, C,a2 
c? 2 

Csa2 

(i) overfocus, Af > 0 A f = - - -  

(20) 
A f = - -  

2 
(ii) underfocus, Af < 0 

where the overfocus condition (i) is established on the basis of the oscillatory nature 
of the sin{K,X(0)) term in equation (19); the general condition is that the sin{K,x(B)) 
term should be nonzero for 0 < 0 < CI and none of the spatial frequencies transmitted 
by the objective aperture are removed from the image (eg Hanszen 1971). The  
underfocus condition is based on a partial cancellation of the spherical aberration 
term in x(0) by the defocus term. The  maximum contrast is obtained for 
xopt E (4h,/c,)1’4 and Afo,, = - ( h,C,)1’2 (Zeitler and Thomson 1970a). A slightly 
modified criterion is obtained when chromatic aberration is included in the wave 
theory (see $4.2). 

3. The effect of spatial incoherence on the image for monochromatic 
radiation 
If the wavevector KO of the incident electron varies, then the radiation is spatially 

incoherent. The distribution F(K,) of KO represents the angular distribution of the 
electrons emitted from the electron gun. KO may be considered as a wavevector with 
two components K, and K,. The scattered wave $, is now dep‘endent on KO and r , .  
$,(KO, r,)  may be written as (Lenz 1965) 

$,(KO, ro) = $o(ro) exp(iK0 ’ ro) (21) 

for elastic electron scattering, provided that the angle of incidence, represented by 
KO, when multiplied by the specimen thickness t is less than the smallest detail to be 
resolved in the specimen (lateral effect, see also Crick and Misell 1971). 

Initially a general distribution F(K,) is considered (5 3.1) and it is shown that for 
specific forms for F(K,) ($3.2), the equations for j ,  in the coherent and incoherent 
cases can be derived. 

3.1. Geneyal distribution 
The image wave of equation (4) may be written, for a given KO, as 

since G is not dependent on KO for monochromatic radiation (Lenz 1965). The 
I$J~(K,, rJl corresponding to different KO are superimposed incoherently, that is 

or 

x exp{iK, . ( r o -  r,’)}  dr, dr,’ dK, (24) 
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where F(Ko) is normalized such that 

/ F(Ko) dK, = j+m J + m  F(K,, Ky) dK,dKy = 1. 

The  asterisk indicates the complex conjugate of a function. In  order to transform 
equation (24) into a more practical form, consider a Fourier transformation of 
equation (22) 

- m  -a 

./ $i(Ko, r,) exp(2rriv .$) dr, = 11 $o(ro)  exp(iK, . ro +2viv . r,)G - - r ,  (: 1 
x exp(2niv . (2 - r , ) ]  dr, dr,. 

From the definitions of the Fourier transforms of $o and G (equation (6)) equation (25) 

and equation (24) for the image intensity is 

x exp ( - 2ni(v - v ’) . - F( KO) dv dv ’ dK, . 
M r? (27) 

It is seen from equation (27) that the integration over KO represents a convolution of 
SOSo* with F. In  the conventional transmission electron microscope F(K,) represents 
the angular distribution of the incident beam on the specimen after focusing by the 
double condenser lens system. If the condenser aperture (semiangle E ,  subtended 
at the electron source) is small, then F(K,) = 6(Ko) and the integration over 
K O  in equation (27) gives 

2 

ji( ri) = 1 1 So(v) T(v) exp ( - 2niv . 2) dvl (28) 

which corresponds to the spatial coherent equation ( 5 ) .  
Equation (27) is now transformed to polar coordinates with 

KO K 8 = X,v and 8, = A,- = 2 
277 KO 

where 8, defines the angular coordinate of the illumination. 
Hence equation (27) becomes 

iK, 
M 

x exp( - - (e -e/ )  . r,) Io(e,) de de’ de, 

wheredo=  BdBd$and6. r i  = Bcos$xi+Bsin+yi. 
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The  angular distribution of the incident electron beam Io(8,) is a measurable 
function (see, for example, Burge et al. 1970, where Io  is measured under small-angle 
diffraction conditions). I o  may be represented by a gaussian distribution of halfwidth 
less than rad for the normal double condenser lens system (AEI EM6). It is 
noted that formally the integrations over 8 and 8’ should be evaluated before the 
integration over 8,is performed. The convolution of YY” withl, represents a modifica- 
tion to the angular distribution of the scattered electron beam by the incident angular 
spread (see eg Crick and Misell 1971). In  the case where Io(8,) = S(e,), equation (30) 
reduces to the coherent case (equation (14)). 

3.2. SpeciJc distribution 
In  order to illustrate the analysis of $ 3.1, a specific form for F(K,)  is chosen, 

namely Io(8,) = l/.rra,2 for a condenser lens aperture illuminated by an electron beam 
of uniform intensity. Consider the integration over KO in equation (24) 

@(ro - ro’) = j F(K,) exp(iK, . ( r ,  - ro‘)} dKo (31) 

which represents the two dimensional Fourier transform of F(K,).  Equation (31) 
is transformed to 8, coordinates using equation (29) to give for the cylindrically 
symmetric I,,(O,, 4) 

@(r, - r,’)  = -- 2fl J U c  J,(K,B,~ro-r,’~)B,dB, 
v a c 2  0 

that is 

The function CD defines the spatial coherence of the illumination (see Hopkins 1951, 
for the light optical case). If a, -+ 0, CD has the value 1 and equation (24) for the 

which is the coherent case (equation (4)). 

may be evaluated to give 
If a, is large, then CD becomes S(r, - r,’) and the integral over r,’ in equation (24) 

which is the incoherent case. In  general for a uniform illumination of the condenser 
aperture, CD is a measure of the spatial coherence (eg Zeitler and Thomson 1970b). 

4. The effect of chromatic incoherence on the image for spatially coherent 
radiation 
The incident electron beam has an energy distribution represented by a variation 

in ]KO], where the energy of the incident electron beam is A2K02/2m. In  this section, 
spatial coherence of the incident electron beam will be assumed, that is, KO is a con- 
stant; in $ 5  spatial incoherence will be included into the theory. Initially it will be 
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assumed that electrons with different KO are incoherent with respect to phase. In  
$4.3, the possibility of coherence over a small interval in KO,  AK,, will be considered. 

The  energy distribution of the incident electron beam is represented by F(K,) or 
N(E), where E represents the energy spread about a most probable value E,. Both 
F(K,) and N(E) are normalized such that 

and 

= 1  

(35) 

J Ar(E)dE = 1. 
- m  

Under normal operating conditions of the electron gun N(E) may be represented 
by an exponential form (Andersen and Mol 1970), that is 

with maximum at E = 0 and N(E)  = 0 at E = p / p .  The halfwidth of N ( E )  is 
determined by both p and p ;  p determines the asymetry of N ( E )  about E = 0. I t  is 
noted, in order to conform with later work on electron energy loss (inelastic electron 
scattering), that E > 0 corresponds to an energy less than E,, E ,  - E. The functions 
F(K,) and iV(E) are known for a given electron gun configuration or these functions 
may be measured (Andersen and Mol 1970). 

4.1. Chromatic coherence interval A K ,  is zero 

KO and equation (4) may be rewritten as 
In  the case of elastic electron scattering $, may be considered as independent of 

G is dependent only on the modulus of KO (Lenz 1965). 

by a superposition of monochromatic electron intensities, that is 
If electrons with different K O  are incoherent, the image intensity ji is calculated 

x F(K,) dr, dr,’ dKo.  (38) 

Equation (38) becomes, on replacing +, and G by their respective Fourier transforms 
(equation (6)) 

ji(ri> = s,” 1 1 SO(V)SO*(V’)T(K~,~)T*(K~,~’) 
xexp(-27ii(v-v‘) F(K,)dvdv’dK, (39) 
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or, on replacing KO by E 

xexp(  -2A(v-v’) (40) 

T(E,v )  now includes a chromatic aberration term, that is, for a lens subject to spherical 
aberration, chromatic aberration and defocusing 

C,Eh(E)2 Af 
Y’ + - h(E)2~2 cs 

4 2EO 2 
W ( E ,  U) = - h(E)*v4 + 

C, is the third order chromatic aberration constant of the objective lens. X(E) is 
formally an energy dependent term, with E ,  very nearly constant, that is 

12.26 
A(E) = (1-tO.978 x 10-6(Eo-E)) -1’2A 

(Eo - 

with E ,  and E in eV. If E ,  is 100 keV, then the thermal energy width, which is less 
than 2 eV, produces a deviation from ho of less than 1 part in lo5 ; hence in equation (41) 
A(E) may be replaced by A,. 

In  order to obtain equation (40) in a more practical form, the variable v is trans- 
formed to 8 space using equation (8) 

iKo 
M 

x exp( - - (e - 6’) . ri)N(E)de de’ dE 

where 
1 

H(E,  6) = - exp{ - iK,y(E, 8)) D(0) 

with D(6) defined by equation (134 and from equation (41) 

(42) 

(43) 

For an object with a centre of symmetry equation (42) simplifies to (in bright field 
electron microscopy) 

ji(ri) = j+ 1: y.“(qy*(e’) exp{- iK,y(E, 19)) exp{iK,y(E, e’))  
M2 - m  0 

N(E)B dI9 8‘ de‘ dE. (45) 
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If the incident electron beam is monochromatic N(E) = 6(E) and the integrations 
over E of equations (42) and (45) lead to the coherent equations (15) and (18) 
respectively. 

4.2. The eflect of chromatic aberration on ilmage formation 
Equation (44) shows clearly that the phase shift, introduced into the scattered 

electron wave by chromatic aberration of the objective lens, is a least comparable 
with the corresponding phase shift introduced by spherical aberration. The  phase 
shifts introduced by chromatic aberration and spherical aberration are respectively 
- KoC,E82/2Eo and - K,C,84/4; the values of C, and C, are typically 0.2 cm for 
E, = 20-100 keV. If CI is taken to be 0.005 rad for incident electrons of energy 
100 keV and cc = 0.01 rad for Eo = 20 keV, the following phase shifts may be 
calculated for 8 = CI and E = 1 eV: 

20keV 1- CA -3.66rad SA - 3.66 rad 8 = 0.01 rad 
100 keV CA - 0.42 rad SA -0.53 rad 8 = 0.005 rad. 

For 6’ < CI, the chromatic aberration term is dominant because of the 82 dependence 
in contrast to the 84 dependence of the spherical aberration term. The only quantitative 
consideration of the chromatic aberration previously made appears within the frame- 
work of linear transfer theory (Hanszen and Trepte 1970,1971). However, the transfer 
function T calculated by Hanszen and Trepte appears to result from an explicit 
assumption of chromatic coherence over the complete energy distribution. 

It is noted that the angular dependence of the chromatic aberration and 
&focusing terms are identical. It is common practice in conventional transmission 
electron microscopy to underfocus (Af < 0) the objective lens in an attempt partially 
to cancel the spherical aberration term. It is suggested that defocusing can be 
effective in a partial cancellation of the chromatic aberration term. 

In  order to estimate the effect of chromatic aberration on the image intensityj,, 
the integration over E in equation (45) is considered, that is 

+ m  

L(8, e’) = 1 exp(- iK,y(E, 8)) exp(iK,y(E, 8’)}N(E) d E  (46) 
- m  

or excluding terms not dependent on E 

which represents the Fourier transform of N(E). If as an explicit example N(E) is 
taken to be of a gaussian form (P/.rr)l’’ exp( - PE2) (an approximation to equation (36) 
with p large), then 

4P 
L(e, e‘) = exp( - 

or 

Hence the chromatic aberration effect may be considered as an attenuation term within 
the 0 integration [equation (45)). The higher spatial frequencies v transmitted by the 
objective aperture are decreased in intensity when chromatic aberration is included. 
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The  contrast in the image at ri = 0, will now depend on the factor 

instead of the sin{KoX(B)} term only ($  2, equation (19)). In  order to maintain the 
contrast, it is evident that xopt must be decreased below the previous value ( $  2). 
If xopt is maintained at these previous values, then the exponential factor in 
equation (48) has a value of 0-83 for Eo = 100 keV (halfwidth of thermal distribution 
is 1 eV, EOpt = 0*0093 rad) and a value of 0.12 for E ,  = 20 keV ( c / . , ~ ~  = 0.0115 rad). 
An increase in the thermal halfwidth to 1.5 eV (eg Boersch effect) causes still larger 
attenuations in the sin{K,x(O)) function (eg 0.65 for Eo = 100 keV). An analytic 
criterion for the choice of xopt is not possible when the chromatic aberration term is 
included but numerical calculations indicate that gOpt should be decreased to 

and (49) 

If ,9 = 2.77 eV-2 (thermal energy halfwidth 1 eV), then xopt = 0.0081 rad 
( E ,  = 100 keV) and xOpt = 0.0067 rad ( E ,  = 20 keV); as in previous calculations 
C,  = C ,  = 0.2 cm. As expected the revised aopt for E ,  = 20 keV is modified con- 
siderably when chromatic aberration is taken into account. 

It is readily verified that if N(E) = 8(E), then equation (47) becomes L(0, e’) = 1, 
and the equation for the image intensityji is 

If N(E) is a uniform distribution of energy, then L(0, e’) = 6(8- e’) andj i  is given by 

Equation (50) corresponds to chromatic and spatial coherence of the incident electron 
beam and equation ( 5  1) to complete chromatic incoherence and spatial coherence. 

4.3. Chromatic coherence interoal AK,  is jinite 
Although it is improbable that the incident electron beam will exhibit phase 

coherence over the complete energy distribution, it is possible that coherence may be 
preserved in a small energy interval AE between E and E+AE. The analysis of 
$4.1 assumed that AE --f 0 and in this section the analysis of $4.1 is extended to a 
consideration of partial coherence in the energy distribution of the incident electron 
beam. I n  equation (40)) the component wavefunctions $i(E, ri) in the image 
plane have been multiplied by $J~*(E, ri) before performing the integration over E. If 
the electrons in the energy interval E, E+ AE exhibit coherence, then the $i(E, ri) are 
first summed over AE before multiplication by the complex conjugate. Provided 
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AE is small, equation (40) may be rewritten as 

ji(ri) = nAEi+m SjS,(v)S,*(v’)T(lzhE,v)T*(nAE,v‘) exp -2ni(v-v‘) .- 
nAE= - C O  

x N’(nAE) dv dv’ 
where 

N’(nAE) = S N ( E ) d E  
(n + l ) A E  

nAE 

and T(nAE,v)  1: constant within a given AE. It is seen that for AE --f 0, equation (52) 
reduces to the chromatic incoherent equation (40). If AE becomes large, implying a 
chromatic coherence, N(E) 2: 1 and the transfer function T contains an energy 
term E, which reflects the average effect of chromatic aberration. Equation (52) then 
becomes 

ji(ri) = 1 1 SO(v)T(E, U) exp ( -2ni U. N - dv . (53) 

Such an assumption has been made in the analysis of Hanszen and Trepte (1970, 
1971). 

As in $ 4.1, equation (52) can be transformed into 8 coordinates in the back focal 
plane of the objective lens. 

It is noted that although the analysis of ss4.1, 4.2 and 4.3 considered only the 
thermal energy distribution of the incident electron beam, other chromatic aberration 
effects can be included. In  particular, one can consider the fluctuations in the 
accelerating voltage AEo(t) and fluctuations in the objective lens current AI(t). I n  
contrast to the analysis on the thermal energy distribution, these time dependent 
variations can only give rise to an incoherent superposition of image intensities; the 
incoherence arises because the detecting system (eg photographic plate) records, at 
$’given instant of time, intensity. Hence the image intensityji is calculated from 
;superposition of image intensities over the period to of recording, that is 

( M 1 (54) 
ri x G* AEo(t), AI( t ) ,  - - ro’ dro dro’ dt. 

The  effect of the thermal energy spread has been omitted for simplification; this 
corresponds to a further integration over E. As in $4.1, t+b0 and G may be replaced 
by their Fourier transforms (equation (6)) to give 

xexp(  

or in 8 space 
(55) 
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The  aberration function p is given by 

+- ~ _ _ _ .  

C,04 A f P  C,02 AE,(t) 
4 2 2 ( E, I 

p(AE(t), AI ( t ) ,  e) = - + - 
Note that although AI > 0 corresponds to an increase in the objective lens current, 
AE, > 0 represents a decrease in the accelerating voltage; this is to conform with the 
definition of E in 5 4. 

The  variations in Eo, I can be considered as effective changes in the focal length 
of the objective lens, that is (see Hanszen 1971) 

Af' CO (F - __ 
ZAlO) I * 

An obvious difficulty in assessing the effects of AEo and A I  on the image intensity 
j ,  is deciding on a functional form for these time variations. If an analytic form is 
chosen, for example, gaussian, maxwellian, sinusoidal or linear fluctuations, then the 
integral over t in equation (56) may be evaluated. I n  a similar way to that outlined 
in 5 4.2, it is then possible to assess the effects of these chromatic defects on j,. In  
high resolution electron microscopes AE,/Eo and AI/ I  have been reduced to 1 part 
in lo5; it is evident that stabilities of 1 part in lo6 are required before these voltage 
and current fluctuations are negligible in comparison with the thermal energy spread. 

Hanszen and Trepte (1970,1971) have considered the effects of variations in E ,  and 
I on the transfer function. As with the analysis on the thermal energy spread, Hanszen 
and Trepte include only the time average effects of AE, and AI in the transfer 
function T.  

5. The effect of spatial and chromatic incoherence on the image 
The practical case in which the incident electron beam has both an angular and 

energy distribution is now considered. The analysis is a simple extension of the 
content of $5 3 and 4. The general case of an angular-energy distribution F(K,, KO)  
is considered and it is assumed that electrons with different KO and KO are incoherent. 
The image wave is then, from equations (22) and (37) 

and the image intensity is given by 

x exp(iK, .(ro - ro ' )}F(Ko,  KO)  dr, dr,' dK, dK,. (59) 
$'(KO, KO)  is normalized such that 

1," 1 F(K,, KO) dK, dK, = 1. 

For the incident electron beam F(K,,  KO)  is a separable function of KO and KO.  
From the general equation (59), the equations of $ 2 (chromatic and spatial coherence), 
$ 3  (chromatic coherence and spatial incoherence) and 5 4 (chromatic incoherence 
and spatial coherence) can be derived. 
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In  order to have equation (57) in the form given for previous cases, the equation 
is transformed to 8 coordinates 

xexp( -  -(8-8’).ri)I,(8,)N(E)d8d8’dB,dE. i KO 
M 

H(E, 8) is the wave aberration function with the chromatic aberration term included 
(equations (43) and (44)). 

As mentioned in 4 3, the integration over 8, in equation (60) is evaluated after 
performing the 8 and 8’ integrations. 

6. Conclusion 
It has been demonstrated that optical transfer theory (Hopkins 1953, 1955) can 

be applied to image formation in the transmission electron microscope. The main 
third order aberrations, namely spherical aberration, chromatic aberration, axial 
astigmatism and defocusing, can be included in the calculation of the image intensity. 
In  particular, two effects of importance in the transmission electron microscope, 
namely the spatial coherence and chromatic coherence of the incident electron beam, 
have been included in the calculation ofj,. The  final expressions for j i  are suited to 
numerical evaluation. 

An approximation made in the present work is the neglect of Fresnel diffraction : 
this corresponds to the omission of obliquity factors such as exp(iKoro2/2z) ( z  is the 
distance between the electron source and the specimen) in the Fourier transform of the 
object wavefunction $o(ro)  (equation (6)). In  practice this approximation is valid pro- 
vided that the object does not exhibit any sharp discontinuities in structure, such as 
an edge. Provided that no phase shifts are introduced into the diffracted wave by, for 
example, defocusing the objective lens, then Fresnel diffraction does not sensibly affect 
the image. However, Fresnel fringes due to an edge or hole in a specimen film are a 
dominant feature of the image for Af = _+ 2000 8. As with the Fraunhofer diffrac- 
tion pattern, Fresnel fringes are adversely affected by the angular and energy spread 
of the incident electron beam, by the lens aberrations and by instabilities in the 
accelerating voltage and objective lens current. It is noted that although Fresnel 
fringes are a useful guide to the spatial and chromatic coherence of the electron source 
and to the objective lens defects, Fresnel fringes give very little information on the 
actual specimen structure. 
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